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Resources 

Course material from  

• Stanford CS-226 (Thrun)  [slides] 

• KAUST ME-410 (Abubakr, 2011) 

• LUMS   EE-662 (Abubakr, 2013) 

http://cyphynets.lums.edu.pk/index.php/Teaching 

 

Textbooks 

• Probabilistic Robotics by Thrun et al.  

• Principles of Robot Motion by Choset et al.  

http://cyphynets.lums.edu.pk/index.php/Teaching
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BAYESIAN PHILOSOPHY 
FOR STATE ESTIMATION 

Part 1.  
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State Estimation Problems 

•What is a state?  

• Inferring “hidden states” from 
observations  

•What if observations are noisy?  

•More challenging, if state is also 
dynamic.  

•Even more challenging, if the state 
dynamics are also noisy.  
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State Estimation Example: Localization 

• Definition. Calculation of a 
mobile robot’s position / 
orientation relative to an 
external reference system 

 
• Usually world coordinates serve as 
reference 

• Basic requirement for several robot 
functions: 

• approach of target points, path 
following 

• avoidance of obstacles, dead-ends 

• autonomous environment mapping 

 

Requires accurate maps !! 
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State Estimation Example: Mapping 

• Objective: Store information 
outside of sensory horizon 

• Map provided a-priori or can 
be online 

 

• Types 

• world-centric maps 
navigation, path planning 

• robot-centric maps 

    pilot tasks (e. g. collision 
avoidance) 

 

• Problem: inaccuracy due to 
sensor systems 

Requires accurate localization!!  
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Probabilistic Graphical Models 

),|,( :1:1:1 ttt uzmxp

Estimate robot path 
and/or map! 
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Simple Example of State Estimation 

• Suppose a robot obtains measurement z 

• What is P(open|z)? 
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Bayes Formula 
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prior likelihood
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Causal vs. Diagnostic Reasoning 

• P(open|z) is diagnostic. 

• P(z|open) is causal. 

•Often causal knowledge is easier to 
obtain. 

•Bayes rule allows us to use causal 
knowledge: 
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Example 

• P(z|open) = 0.6  P(z|open) = 0.3 

• P(open) = P(open) = 0.5 
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 z raises the probability that the door is 

open. 
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Combining Evidence 

•Suppose our robot obtains another 
observation z2. 

•How can we integrate this new 
information? 

•More generally, how can we estimate 
P(x| z1...zn )? 
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Recursive Bayesian Updating 
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Example: Second Measurement  

• P(z2|open) = 0.5  P(z2|open) = 0.6 

• P(open|z1)=2/3 
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Probabilistic Graphical Models 

),|,( :1:1:1 ttt uzmxp

Sensing:  ( | , )t tp z x m
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Typical Measurement Errors of 
an Range Measurements 

1. Beams reflected by 
obstacles 

2. Beams reflected by 
persons / caused 

by crosstalk 

3. Random 
measurements 

4. Maximum range 
measurements 
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Raw Sensor Data 

Measured distances for expected distance of 300 cm.  

Sonar Laser 
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Approximation Results 

Sonar 

Laser 

300cm 400cm 
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Actions 

•Often the world is dynamic since 

• actions carried out by the robot, 

• actions carried out by other agents, 

• or just the time passing by 

 change the world. 

 

•How can we incorporate such 
actions? 
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Typical Actions 

• The robot turns its wheels to move 

• The robot uses its manipulator to grasp 
an object 

• Plants grow over time… 

 

• Actions are never carried out with 
absolute certainty. 

• In contrast to measurements, actions 
generally increase the uncertainty.  
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Modeling Actions 

• To incorporate the outcome of an 
action u into the current “belief”, we 
use the conditional pdf  

 

P(x|u,x’) 

 

• This term specifies the pdf that 
executing u changes the state 
from x’ to x. 
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Probabilistic Graphical Models  
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Odometry Model 
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Effect of Distribution Type 
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Example: Closing the door 
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State Transitions 

P(x|u,x’) for u = “close door”: 

 

 

 

 

 

 

If the door is open, the action “close 
door” succeeds in 90% of all cases. 

o p e n c l o s e d0 . 1 1

0 . 9

0
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Integrating the Outcome of Actions 
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Continuous case: 
 
 
 
 
 

Discrete case: 
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Example: The Resulting Belief 
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Bayes Filters: Framework 

• Given: 

• Stream of observations z and action data u: 

 

• Sensor model P(z|x). 

• Action model P(x|u,x’). 

• Prior probability of the system state P(x). 

• Wanted:  

• Estimate of the state X of a dynamical system. 

• The posterior of the state is also called Belief: 

),,,|()( 11 tttt zuzuxPxBel 

1 1{ , , , }t tu z u z



9-30 

Dynamic Bayesian Network for 
Controls, States, and Sensations 
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Markov Assumption 

Underlying Assumptions 

• Static world 

• Independent noise 

• Perfect model, no approximation errors 

),|(),,|( 1:1:11:1 ttttttt uxxpuzxxp  

)|(),,|( :1:1:0 tttttt xzpuzxzp 



9-32 
111 )(),|()|(  ttttttt dxxBelxuxPxzP

Bayes Filters 
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Bayes Filter Algorithm  

1.  Algorithm Bayes_filter( Bel(x),d ): 

2.  0 

3.  If d is a perceptual data item z then 

4.      For all x do 

5.   

6.   

7.      For all x do 

8.   

9.  Else if d is an action data item u then 

10.      For all x do 

11.   

12.  Return Bel’(x)       
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Bayes Filters are Familiar! 

• Kalman filters 

• Particle filters 

• Hidden Markov models 

• Dynamic Bayesian networks 

• Partially Observable Markov Decision 
Processes (POMDPs) 

111 )(),|()|()(  tttttttt dxxBelxuxPxzPxBel 
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Bayes Filters in Localization 
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Summary so far …. 

•Bayes rule allows us to compute 
probabilities that are hard to assess 
otherwise. 

•Under the Markov assumption, 
recursive Bayesian updating can be 
used to efficiently combine evidence. 

•Bayes filters are a probabilistic tool 
for estimating the state of dynamic 
systems. 



9-37 

Parametric Vs. Non-parametric 

•Representing distributions by using 
statistics or parameters (mean, 
variance) 

•Non-parametric approach: Deal with 
distributions directly 

•Remember:  
1. Gaussian distribution is completely 

parameterized by two numbers (mean, 
variance) 

2. Gaussian distribution remains Gaussian when 
mapped linearly.  
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Linearization 
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Linearization (Cont.) 
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Bayes Filters in Localization 
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1 

Histogram = 
Piecewise  
Constant 
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Piecewise Constant 
Representation 
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Discrete Bayes Filter Algorithm  

1.  Algorithm Discrete_Bayes_filter( Bel(x),d ): 

2.  0 

3.  If d is a perceptual data item z then 

4.      For all x do 

5.   

6.   

7.      For all x do 

8.   

9.  Else if d is an action data item u then 

10.      For all x do 

11.   

12.  Return Bel’(x)       
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Implementation (1) 

• To update the belief upon sensory input and to carry out 
the normalization one has to iterate over all cells of the 
grid. 

• Especially when the belief is peaked (which is generally the 
case during position tracking), one wants to avoid 
updating irrelevant aspects of the state space. 

• One approach is not to update entire sub-spaces of the 
state space. 

• This, however, requires to monitor whether the robot is 
de-localized or not. 

• To achieve this, one can consider the likelihood of the 
observations given the active components of the state 
space. 
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Implementation (2) 

• To efficiently update the belief upon robot motions, one typically 
assumes a bounded Gaussian model for the motion uncertainty. 

• This reduces the update cost from O(n2) to O(n), where n is the 
number of states. 

• The update can also be realized by shifting the data in the grid 
according to the measured motion. 

• In a second step, the grid is then convolved using a separable 
Gaussian Kernel. 

• Two-dimensional example: 
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Fewer arithmetic operations 

Easier to implement 
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Markov Localization 
in Grid Map 
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Grid-based Localization 
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 Set of weighted samples 

 

 

 

 

 

Mathematical Description 

 The samples represent the posterior 

 

State hypothesis Importance weight 
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 Particle sets can be used to approximate functions 

Function Approximation 

 The more particles fall into an interval, the higher 

the probability of that interval 

 

 How to draw samples form a function/distribution? 
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 Let us assume that f(x)<1 for all x 

 Sample x from a uniform distribution 

 Sample c from [0,1] 

 if f(x) > c   keep the sample 

otherwise  reject the sampe  

Rejection Sampling 

c 

x 

f(x) 

c’ 

x’ 

f(x’) 

OK 
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 We can even use a different distribution g to 

generate samples from f 

 By introducing an importance weight w, we can 

account for the “differences between g and f ” 

 w = f / g 

 f is often called 

target 

 g is often called 

proposal 

 Pre-condition: 

 f(x)>0  g(x)>0 

Importance Sampling Principle 
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Importance Sampling with Resampling: 
Landmark Detection Example 
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Distributions 
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Distributions 

Wanted: samples distributed according to 
p(x| z1, z2, z3) 
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This is Easy! 

We can draw samples from p(x|zl) by adding 
noise to the detection parameters. 
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Importance Sampling 
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Importance Sampling with 
Resampling 

Weighted samples After resampling 
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Particle Filters 
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  'd)'()'|()( , xxBelxuxpxBel

Robot Motion 
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Robot Motion 

 'd)'()'|()( , xxBelxuxpxBel
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Particle Filter Algorithm 

 Sample the next generation for particles using the 

proposal distribution 

 

 Compute the importance weights : 

 weight = target distribution / proposal distribution 

 

 Resampling: “Replace unlikely samples by more 

likely ones” 

 

 

[Derivation of the MCL equations in book] 
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Particle Filter Algorithm 
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draw xi
t1 from Bel(xt1) 

draw xi
t from p(xt | x

i
t1,ut1) 

Importance factor for xi
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Resampling 

 Given: Set S of weighted samples. 

 

 Wanted : Random sample, where the 
probability of drawing xi is given by wi. 

 

 

 Typically done n times with replacement to 
generate new sample set S’. 
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w2 

w3 

w1 wn 

Wn-1 

Resampling 

w2 

w3 

w1 wn 

Wn-1 

 Roulette wheel 

 Binary search, n log n 

 Stochastic universal sampling 

 Systematic resampling 

 Linear time complexity 

 Easy to implement, low variance 
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1.  Algorithm systematic_resampling(S,n): 

 

2.   

3.  For    Generate cdf 

4.      

5.      Initialize threshold 
 

6.  For    Draw samples … 

7.    While (            ) Skip until next threshold reached 

8.         

9.      Insert 

10.                                           Increment threshold 

 

11. Return S’ 

Resampling Algorithm 

1
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Also called stochastic universal sampling 
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Mobile Robot Localization 

 Each particle is a potential pose of the robot 

 

 Proposal distribution is the motion model of the 

robot (prediction step) 

 

 The observation model is used to compute the 

importance weight (correction step) 
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Start 

Motion Model 
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Proximity Sensor Model 

Laser sensor Sonar sensor 
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Initial Distribution 
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After Incorporating Ten 
Ultrasound Scans 
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After Incorporating 65 
Ultrasound Scans 
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Estimated Path 
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Using Ceiling Maps for Localization 

[Dellaert et al. 99] 
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Vision-based Localization 

P(z|x) 

h(x) 

z 



9-96 

Under a Light 

Measurement z: P(z|x): 
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Next to a Light 

Measurement z: P(z|x): 
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Elsewhere 

Measurement z: P(z|x): 
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Global Localization Using Vision 
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Summary – Particle Filters 

 Particle filters are an implementation of 
recursive Bayesian filtering 

 They represent the posterior by a set of 
weighted samples 

 They can model non-Gaussian 
distributions 

 Proposal to draw new samples 

 Weight to account for the differences 
between the proposal and the target 

 Monte Carlo filter, Survival of the fittest, 

Condensation, Bootstrap filter 
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Summary – Monte Carlo 
Localization 

 In the context of localization, the 
particles are propagated according 
to the motion model. 

 They are then weighted according to 
the likelihood of the observations. 

 In a re-sampling step, new particles 
are drawn with a probability 
proportional to the likelihood of the 
observation.  


