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Resources

Course material from
e Stanford CS-226 (Thrun) [slides]
e KAUST ME-410 (Abubakr, 2011)

e LUMS EE-662 (Abubakr, 2013)
http://cyphynets.lums.edu.pk/index.php/Teaching

Textbooks
® Probabilistic Robotics by Thrun et al.
¢ Principles of Robot Motion by Choset et al.
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http://cyphynets.lums.edu.pk/index.php/Teaching

Part 1.

BAYESIAN PHILOSOPHY
FOR STATE ESTIMATION
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State Estimation Problems

e \What is a state?

e [nferring “hidden states” from
observations

e \What if observations are noisy?

® More challenging, if state is also
dynamic.

® EFven more challenging, if the state
dynamics are also noisy.
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State Estimation Example: Localization

e Definition. Calculation of a
mobile robot’s position /
orientation relative to an
external reference system

* Usually world coordinates serve as
reference

* Basic requirement for several robot
functions:

* approach of target points, path
following

* avoidance of obstacles, dead-ends
* autonomous environment mapping

Requires accurate maps !!



State Estimation Example: Mapping

Topologlcal maps

® Objective: Store information N
outside of sensory horizon {;m}l/ > 3{\;;:;)

e Map prOVided a-priori or can Sector maps Hybrid maps | € St'ltez\}j\’/
be online - el

® Types
e world-centric maps
navigation, path planning

e robot-centric maps

pilot tasks (e. g. collision
avoidance)

® Problem: inaccuracy due to
sensor systems

Requires accurate localization!!




Probabilistic Graphical Models

P(Xp, M| Zp, Uy )

Estimate robot path
and/or map!
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Simple Example of State Estimation

® Suppose a robot obtains measurement z
e What is P(open|z)?

S
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Bayes Formula

P(x,y)=P(x]y)P(y)=P(y|x)P(x)
P(y|x) P(x) _ likelihood -prior

P(X|y)=
( \y) P(y) evidence
P(x| y) = P‘V'P?y)P(X) — 7 P(Y| %) P(X)
n=P(y)" = 1

- > P(Y|X)P(x)

9-9



Causal vs. Diagnostic Reasoning

® P(open|z) is diagnostic.
® P(z|lopen) is causal.

e Often causal knowledge is easier to
obtain.

® Bayes rule allows us to use causal
knowledge:

P(z | open)P(open)
P(z)

P(open | z) =
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Example

* P(z|open) = 0.6 P(z|-open) = 0.3
* P(open) = P(—open) = 0.5

P(z | open)P(open)
P(z | open) p(open) + P(z | —open) p(—open)
0.6-0.5 2
0.6-05+0.3-05 3

P(open|z) =

P(open|z) = 0.67

Z raises the probability that the door is
open.
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Combining Evidence

® Suppose our robot obtains another
observation z,.

® How can we integrate this new
information?

® More generally, how can we estimate
P(x| z,...2,)?
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Recursive Bayesian Updating

P(x|z,...,2n) P(zn|X,2y,...,20-1) P(X| 24,...,
..., n)=
P(zn| za,...,2n-1)

Zn—l)

Markov assumption: z, is independent of z,,...,z,_; if we
know Xx.

P(zn| X)P(X|z1,...,2Zn-1)
P(an Z1,..., Zn—l)
=nP(zn | X)P(X]| 21,...,2Zn-1)

=1L [P@X)IP(X)

i=1...n

P(x|zs,...,2n) =
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Example: Second Measurement

o P(Zzlgpen) =0.5 P(zz|ﬁopen) = 0.6
* P(open|z,)=2/3

P(z, |open) P(open|z,)
P(z, | open) P(open|z,)+ P(z, | —open) P(—open | z,)

P(Open | Zy, 21) —

12
23 _5_
"T2.31 g %

2 3 53

Z, lowers the probability that the door is
open.
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Probabilistic Graphical Models

P(X, M| Zyy, Upy)
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Typical Measurement Errors of
an Range Measurements

1. Beams reflected by

obstacles \

2. Beams reflected by ]
PErsons / CauSe (rmm—— NN /
by crosstalk

3. Random , / -
measurements

§ —
4. Maximum range=—=—=——
measurements
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Raw Sensor Data

Measured distances for expected distance of 300 cm.
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Approximation Results

» N

Zt 2y
Sonar
z; 2
300cm 400cm
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Actions

e Often the world is dynamic since
e actions carried out by the robot,
e actions carried out by other agents,
e or just the time passing by
change the world.

® How can we incorporate such
actions”?
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Typical Actions

® The robot turns its wheels to move

® The robot uses its manipulator to grasp
an object

® Plants grow over time...

® Actions are never carried out with
absolute certainty.

® In contrast to measurements, actions
generally increase the uncertainty.
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Modeling Actions

® To incorporate the outcome of an
action v into the current “belief”, we
use the conditional pdf

P(x|u,x’)

® This term specifies the pdf that
executing u changes the state
from x’ to x.
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Probabilistic Graphical Models

Action: P(X | X4, U_;)

P(X, M| Zyy, Upy)
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Odometry Model

Robot moves from <>‘<, y,é} to<>‘<',y',§'>.

Odometry information  u=(5,,4, 8,00+ Oyars)

5trans — \/()_(l_)_()2 + (y'_y)z
S, = atan2(y'-y, X'-X) -6

) o2 — 5'_6 o 5rot1

r
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Effect of Distribution Type
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Example: Closing the door

-
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State Transitions

P(x|u,x’) for u = “close door”:

O. €

0. ope C|O

0

If the door is open, the action “close
door” succeeds in 90% of all cases.
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Integrating the Outcome of Actions

Continuous case:

P(x|u) = I P(x|u,x")P(x")dx

Discrete case:

P(x|u)= > P(x|u,x)P(x)
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Example: The Resulting Belief
P(closed |u) = P(closed |u,x")P(x')
= P(closed |u, open)P(open)
+ P(closed | u,closed)P(closed)
9.9 1 3 15

10 8 1 8 16
P(open |u) = > P(open|u,x")P(x")

= P(open | u,open)P(open)

+ P(open | u,closed )P(closed)
1 5 0 3 1

= ¥ -4 — % - = —

10 8 1 8 16

=1-P(closed |u)
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Bayes Filters: Framework

e Given:
e Stream of observations z and action data u:
{u,z, ...,u,z}
e Sensor model P(z|x).
e Action model P(x|u,x’).
e Prior probability of the system state P(x).
e Wanted:
e Estimate of the state X of a dynamical system.
e The posterior of the state is also called Belief:

Bel (%) = P(X, Uy, 2, ..., Uy, Z,)
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Dynamic Bayesian Network for
Controls, States, and Sensations
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Markov Assumption

p(zt |X0:t’ Ztt’urt) — p(zt ‘Xt)
p(xt ‘ X]_'t—l’zl't’ul't) — p(xt ‘Xt—l’ut)

Underlying Assumptions

e Static world

® Independent noise

® Perfect model, no approximation errors
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Bayes Filters

Bel (%)= P(x |u
s =1 P(z,
Markov =7 P(Zt
Total prob. =17 P(Z,
Markov
Markov

X Uy 4y,

%) P(X U2, .., U,)

X;)

[P(x
(%,

o U, Z,)

. u) P(x |u,z,...,u,)

=17 P(z,1%) [ PO& U % 0) PO (U4, 2,
=17P(z,1%) [ POG U %) POX

Z =
u
X

=17 P(z1%) [P(X |, % ;) Bel (x.,) dx

action
state

observation
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Bel (x) =7 P(z,1%) | P(x U, %) Bel (x,) dx,

1. Algorithm Bayes_filter( Bel(x),d ):
2 n=0

3 If d is a perceptual data item z then
4, For all x do

5. Bel'(x) = P(z | x)Bel (x)
6 n =n+ Bel'(X)

7 For all x do

8 Bel'(x) = n‘lBeI'(x)

9 Else if d is an action data item u then

10. For all x do
11. Bel' (x) = [ P(x|u,x') Bel (x') dx

12. Return Bel’(x)
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Bayes Filters are Familiar!

Bel (x) =7 P(z,1%) | P(x |u, %) Bel (x,) dx,,

Kalman filters

Particle filters

Hidden Markov models
Dynamic Bayesian networks

Partially Observable Markov Decision
Processes (POMDPs)
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Bayes Filters in Localization

Bel (%) =77 P(z1%) | P( [, % ;) Bel (X ;) dx,;
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Summary so far ....

® Bayes rule allows us to compute
probabilities that are hard to assess
otherwise.

® Under the Markov assumption,
recursive Bayesian updating can be
used to efficiently combine evidence.

® Bayes filters are a probabilistic tool
for estimating the state of dynamic
systems.

9-36



Parametric Vs. Non-parametric

® Representing distributions by using
statistics or parameters (mean,
variance)

® Non-parametric approach: Deal with
distributions directly

® Remember:

1. Gaussian distribution is completely
parameterized by two numbers (mean,
variance)

2. Gaussian distribution remains Gaussian when

mapped linearly.
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Linearization

6 6
Py — Function gix)
— Gaussian of p(y) — Taylor approx.
4 || — EFK Gaussian 4 = teanp
Q o
2
0 T 0
-2 -2
-4 1 L L L -4 )
0 020406 0.8 0 0.5 1
& P
g Meanp
=41
2t
0 =
n ne 1
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Linearization (Cont.)

6 6
iy — Function g
— (Gaussian of piy) = Taylor approx.
4 || — EFK Gaussian 4 ‘ d= Meanp
Q ow
-
= ﬂ |
2 2
-4 . L L -4 '
0 05 1 15 0 0.5 1
20 ¢ o= Ew;:?an L
" j\
0 =
] nE 1
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Bayes Filters in Localization

Bel (%) =77 P(z1%) | P( [, % ;) Bel (X ;) dx,;
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Histogram =
Piecewise
Constant
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Discrete Bayes Filter Algorithm

1. Algorithm Discrete_Bayes_filter( Bel(x),d ):
2 n=0

3 If d is a perceptual data item z then
4, For all x do

5. Bel'(x) = P(z | x)Bel (x)
6 n =n+ Bel'(X)

7 For all x do

8 Bel'(x) = n‘lBeI '(X)

0. Else if d is an action data item u then
10. For all x do

11. Bel'(x) =) P(x|u,x") Bel(x')
12. Return Bel(x) *
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Implementation (1)

® To update the belief upon sensory input and to carry out
the normalization one has to iterate over all cells of the
grid.

e Especially when the belief is peaked (which is generally the
case during position tracking), one wants to avoid
updating irrelevant aspects of the state space.

® One approach is not to update entire sub-spaces of the
state space.

® This, however, requires to monitor whether the robot is
de-localized or not.

® To achieve this, one can consider the likelihood of the
observations given the active components of the state
space.
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Implementation (2)

e To efficiently update the belief upon robot motions, one typically
assumes a bounded Gaussian model for the motion uncertainty.

® This reduces the update cost from O(n?) to O(n), where n is the
number of states.

® The update can also be realized by shifting the data in the grid
according to the measured motion.

® In a second step, the grid is then convolved using a separable
Gaussian Kernel.

e Two-dimensional example:

1/16 | 1/8 | 1/16 1/4

1/8 | 1/4 | 1/8

|12

12| 4+ |1a]12] 1/4

1/16| 1/8 | 1/16 1/4

Fewer arithmetic operations

Easier to implement
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Markov Localizatio
in Grid Map
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Grid-based Localization
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Mathematical Description

" Set of weighted samples
S = {<s[i],w[i]> |1 = 1,...,N}

[

State hypothesis Importance weight

" The samples represent the posterior

N
p(z) = > w6 ()
i—=1
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Function Approximation

Particle sets can be used to approximate functions

f(x)

samples

f(x)

samples

probability / weight

probability / weight

LTI R ARG

" The more particles fall into an interval, the higher
the probability of that interval

" How to draw samples form a function/distribution?.4



Rejection Sampling

Let us assume that f(x)<1 for all x

Sample x from a uniform distribution

Sample ¢ from [0,1]

if f(x) >c
otherwise

probability / weight

keep the sample
reject the sampe

f(x)

samples

Ce

()

(Jf’)
OK

X x’
W T
X
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Importance Sampling Principle

We can even use a different distribution g to
generate samples from f

By introducing an importance weight w, we can
account for the “differences between g and f”

w="f/ g proposal(x)
= target(x)
f is often called 2 samples
=
target Z
g is often called £
]
proposal 2
...|||||II||JLLHJ||M||MLLH_|IHH ‘ I

Pre-condition:
f(x)>0 =2 g(x)>0

X
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Importance Sampling with Resampling:
Landmark Detection Example




Distributions

A,

./
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Distributions

Wanted: samples distributed according to
p(Xl Zl/ ZZ/ 23)

9-54



This is Easy!

We can draw samples from p(x|z,) by adding
noise to the detection parameters.
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Importance Sampling

H p(z, [x) p(x)

p(z,,2,,..., 2,)

Target distribution f : p(x| z,,2,,...,Z,) =

p(z | X) p(X)

Sampling distribution g: p(x|z,) =
p(z)

p(z,) H p(z, | X)
Importance weights w :i = p(x12,,2,,-,,2,) _ k=l
g p(x]z) p(z,,2,,.... 2,)
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Importance Sampling with
Resampling

Weighted samples After resampling
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Particle Filters
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Sensor Information: Importance Sampling
Bel(x) <« «a p(z|x) Bel (x)
a p(z]|x) Bel (x)

W «— gl () = a p(z]x)

5
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Robot Motion
Bel (x) <« jp(x|u,x') Bel (x') dx'
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Sensor Information: Importance Sampling
Bel(x) <« «a p(z|x) Bel (x)
a p(z]|x) Bel (x)

Bel ~(x)

W

Eennnnnnt | Snnenenenen | SR
p(s)

s
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Robot Motion

Bel (x) <« jp(x|u,x') Bel (x') dx'
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Particle Filter Algorithm

® Sample the next generation for particles using the
proposal distribution

" Compute the importance weights :
weight = target distribution / proposal distribution

" Resampling: "Replace unlikely samples by more
likely ones”
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Particle Filter Algorithm

Algorithm particle_filter( M, ;, U, y,):
M =0, n=0
For i=1...n Generate new samples

Sample mdex j(i) from the discrete distribution given by M

Sample x’ from p(x, |x,_,u,_) using x/ and u,_,

w = p(y, | x)) Compute importance weight
n=n+w Update normalization factor
M, =M, u{<x,w >} Insert

For i=1...n
w =w/n Normalize weights
11. RESAMPLE!!!
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Particle Filter Algorithm

Bel (x) = 1 Pz 1%) [ POX %U0) Bel (x.,)

— draw x',_; from Bel(x,_,)

— draw x|, from p(x,| X',_1,U;_;)

— Importance factor for x\:
W= target distribution
' proposaldistribution
_ 17 p(z %) P(X | X, Upy) Bel (%)
P(X, [ X1, Upq) Bel (%)
oc p(z, | %)
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Resampling

= Given: Set S of weighted samples.

= Wanted : Random sample, where the
probability of drawing x; is given by w..

= Typically done n times with replacement to
generate new sample set S".

9-66



Resampling

Stochastic universal sampling
Roulette wheel Systematic resampling
Binary search, n log n Linear time complexity

Easy to implement, low variance
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Resampling Algorithm

1. Algorithm systematic_resampling(S,n):

2. S'=g,c, =W

3. For i=2...n Generate cdf

4,  C=C_+W

5. u, ~UJo,n*],i=1 Initialize threshold

6. For j=1...n Draw samples ...

7. While ( u; >¢;) Skip until next threshold reached
8. I=i+1

9. S'= S'u{< x',n >} Insert

10. U =u;+n" Increment threshold

11. Return §”

Also called stochastic universal samplihép




Mobile Robot Localization

" Each particle is a potential pose of the robot

" Proposal distribution is the motion model of the
robot (prediction step)

" The observation model is used to compute the
importance weight (correction step)

9-69



Motion Model

10 meters
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probability

Proximity Sensor Model

Approximated ——

Measured —

|
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| | I
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After Incorporating Ten
Ultrasound Scans
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After Incorporating 65
Ultrasound Scans
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Estimated Path




Using Ceiling Maps for Localization

[Dellaert et &-90]



Vision-based Localization

O0000g

P(z|x)
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Under a Light

Measurement z:

P(z|x):
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Next to a Light

Measurement z: P(z|x):
. f‘.""""h "I--u-”i “ﬁl - 4
., O v ™
" ' - _‘_ t
g -.E-rt'- '
"
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Elsewhere

Measurement z: P(z|x):
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Global Localization Using Vision




Summary - Particle Filters

= Particle filters are an implementation of
recursive Bayesian filtering

" They represent the posterior by a set of
weighted samples

= They can model non-Gaussian
distributions

"= Proposal to draw new samples

= Weight to account for the differences
between the proposal and the target

" Monte Carlo filter, Survival of the fittest,
Condensation, Bootstrap filter
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Summary - Monte Carlo
Localization

= In the context of localization, the
particles are propagated according
to the motion model.

= They are then weighted according to
the likelihood of the observations.

" In a re-sampling step, new particles
are drawn with a probability
proportional to the likelihood of the
observation.
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